X-ray of hip prostheses

From radlines.org
Revision as of 09:55, 6 July 2018 by Mikael Häggström (talk | contribs) (delinked)
Jump to navigation Jump to search
Main components of a hip prosthesis[1]

Author: Mikael Häggström [notes 1]

Configuration

Post-operative projectional radiography ("X-ray") is routinely performed to ensure proper configuration of hip prostheses.

The direction of the acetabular cup influences the range of motion of the leg, and also affects the risk of dislocation.[2] For this purpose, the acetabular inclination and the acetabular anteversion are measurements of cup angulation in the coronal plane and the sagittal plane, respectively.

Complications

Dislocation

Fracture

Post-operative femoral fractures are graded by the Vancouver classification:

Type Description
A Fracture in the trochanteric region
B1 Fracture around stem or just below, with well fixed stem
B2 Fracture around stem or just below, with loose stem but good proximal bone
B3 Fracture around stem or just below, with poor quality or severely comminuted proximal bone
C Fracture below theprosthesis

Loosening

Hip prosthesis displaying aseptic loosening (arrows)

On radiography, it is normal to see thin radiolucent areas of less than 2 mm around hip prosthesis components, or between a cement mantle and bone. However, these may still indicate loosening of the prosthesis if they are new or changing, and areas greater than 2 mm may be harmless if they are stable.[6] The most important prognostic factors of cemented cups are absence of radiolucent lines in DeLee and Charnley zone I, as well as adequate cement mantle thickness.[7] In the first year after insertion of uncemented femoral stems, it is normal to have mild subsidence (less than 10 mm).[6]

References

  1. Andrew Still (2002-11-02). Total Hip Replacement. University of Southern California. Retrieved on 2017-01-05.
  2. 2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7 Iain Watt, Susanne Boldrik, Evert van Langelaan and Robin Smithuis. Hip - Arthroplasty -Normal and abnormal imaging findings. Radiology Assistant. Retrieved on 2017-05-21.
  3. 3.0 3.1 3.2 3.3 3.4 3.5 3.6 3.7 Vanrusselt, Jan; Vansevenant, Milan; Vanderschueren, Geert; Vanhoenacker, Filip (2015). "Postoperative radiograph of the hip arthroplasty: what the radiologist should know ". Insights into Imaging 6 (6): 591–600. doi:10.1007/s13244-015-0438-5. ISSN 1869-4101. PMID 26487647. 
  4. 4.0 4.1 Shin, W. C.; Lee, S. M.; Lee, K. W.; Cho, H. J.; Lee, J. S.; Suh, K. T. (2015). "The reliability and accuracy of measuring anteversion of the acetabular component on plain anteroposterior and lateral radiographs after total hip arthroplasty ". The Bone & Joint Journal 97-B (5): 611–616. doi:10.1302/0301-620X.97B5.34735. ISSN 2049-4394. 
  5. Daniel J. Berry, Jay Lieberman (2012). Surgery of the Hip . Elsevier Health Sciences. p. 1035. ISBN 9781455727056. 
  6. 6.0 6.1 Roth, Trenton D.; Maertz, Nathan A.; Parr, J. Andrew; Buckwalter, Kenneth A.; Choplin, Robert H. (2012). "CT of the Hip Prosthesis: Appearance of Components, Fixation, and Complications ". RadioGraphics 32 (4): 1089–1107. doi:10.1148/rg.324115183. ISSN 0271-5333. 
  7. Steffen Breusch, Henrik Malchau (2005). The Well-Cemented Total Hip Arthroplasty: Theory and Practice . Springer Science & Business Media. p. 336. ISBN 978-3-540-24197-3. 
  8. John J. Callaghan, Aaron G. Rosenberg, Harry E. Rubash (2007). The Adult Hip, Volume 1 . Lippincott Williams & Wilkins. p. 958. ISBN 978-0-7817-5092-9. 
  9. Neumann, Daniel R.P.; Thaler, Christoph; Hitzl, Wolfgang; Huber, Monika; Hofstädter, Thomas; Dorn, Ulrich (2010). "Long-Term Results of a Contemporary Metal-on-Metal Total Hip Arthroplasty ". The Journal of Arthroplasty 25 (5): 700–708. doi:10.1016/j.arth.2009.05.018. ISSN 0883-5403. 


Cite error: <ref> tags exist for a group named "notes", but no corresponding <references group="notes"/> tag was found, or a closing </ref> is missing